
I2NP Polling HTTP Transport
Revision 0.9, 28 August, 2003

http://www.InvisibleNet.net/ info@invisiblenet.net
jrandom@invisiblenet.net

Table of Contents
1.Transport Overview...2

Goals..2
Assumptions.. 2
Components... 2
Transport Scope...2
I2NP Integration.. 2
Threat Model... 3

2.Communication Security...3
3.Bridge Usage... 4
4.Requests and Responses..4

InvisibleNet – www.invisiblenet.net Page 1/6

1.Transport Overview

Goals
The goal of the Polling HTTP Transport is to allow bidirectional communication
between applications, even if one or both of the parties are behind firewalls or even
HTTP proxies, as long as there is a location on the Internet that they can both reach.
In addition, the bridge component must be trivial to install and make available to other
people on the Internet. To meet the needs of I2NP, this transport can protect both the
integrity and the confidentiality of all messages passed through it.

Assumptions
The Polling HTTP Transport requires that clients are able to initiate HTTP/1.0
requests to arbitrary sites on the Internet.

Components
The transport is made up out of two components:

– Clients: the applications that want to communicate with each other are clients –
these components send messages to other clients by bouncing the messages through
bridges, and they also pick up messages destined for them from their own bridges.

– Bridges: the application serving as a way-point for clients to communicate, storing
and forwarding messages, deterring abuse, and building its own network of
bridges.

Transport Scope
Given a RouterAddress and a set of bytes to be delivered, the Polling HTTP Transport
communicates with the appropriate bridge, establishes a private session with the
remote address, delivers the data, and optionally waits until the data is confirmed
received. The transport protocol is required to make sure that the data is passed to the
bridge successfully, and that the client can know for certain that the recipient received
the data fully and correctly.

I2NP Integration
I2NP requires certain pieces of information to be specified up front beyond the
transport's API, and this data is included here:

Unique Identifier:

HTTP.Polling.1
Options:

url: full URL that messages should be sent to

clientId: identifier assigned by that bridge for the client (e.g. “a43fae32”)

expiration: date the address is no longer reachable, or “none” for never

 (format is yyyy/MM/dd.hh:mm:ss in GMT)

InvisibleNet – www.invisiblenet.net Page 2/6

Threat Model
The I2NP Polling HTTP Transport aims to ensure the confidentiality of messages sent
between locations even if all data passed over the network is recorded. In addition,
the transport will operate such that even if the bridge is controlled by an attacker, the
attacker will not know the contents of the messages being sent, and if the client uses
an anonymous HTTP proxy, the bridge will not even know where the client is located.
Finally, the transport will not use a central bridge discovery point so that an attacker
cannot take that out – instead it will allow bridges to maintain, discover, and verify
their own links to other bridges.

2.Communication Security
To secure the data passed over HTTP between the client and the bridge, data in
encrypted with 256bit AES in CBC mode based on a session key determined by a
Diffie-Hellman key exchange. Since anonymizing proxies may be used to
communicate with the bridge, HTTP sessions must be maintained through secure
alternate means – by using random one time use session tags prefixed to the encrypted
data.

In addition, the client to bridge to client communication is encrypted client to client so
the bridge has no idea what is being said. This operates in a similar fashion – since
clients already know other client's public keys, a client initially creates a set of session
tags and an associated session key, encrypted to the receiving client's public key, and
then delivers that encrypted package to the bridge. The bridge then passes that
package on to the client who opens it up and associates a set of session tags with the
enclosed session key. Actual inter-client messages are encrypted with that session
key, prefixed with one of the unused session tags, delivered to the bridge where it is
queued for delivery to the destination client at its next poll.

Session keys can be rotated whenever a new set of session tags are generated and
delivered for a client or a new DH exchange takes place. In addition, new session tags
can be attached to any of the messages.

Finally, to allow clients to know for certain whether messages are actually being
delivered to the client instead of simply swallowed by the bridge, client to client
messages include an acknowledgment code that, once received by the receiving client,
it sends back to the bridge which then offers it to the sending client as proof of
successful delivery.

InvisibleNet – www.invisiblenet.net Page 3/6

3.Bridge Usage

The above message is the first message sent from the client to the bridge negotiating a
private session key and a set of initial session tags (32 byte random numbers used to
identify a request as being encrypted with the associated session key). This message,
like all other requests in the Polling HTTP Transport Protocol, is sent via HTTP
POST. (g^x mod n, g^y mod n, and g^xy mod n are the formulas for calculating the
value – the calculated unsigned integers in network byte order are put in their place)

The content of all messages from the client to the bridge begins with one of the
unused session tags, and the remainder of the HTTP POST is AES encrypted using
the negotiated session key. The content encrypted in the POST begins with a 1 byte
unsigned integer in network byte order specifying how many session tags follow, and
then that many 32 byte random session tags are produced. After that comes a 1 byte
unsigned integer in network byte order specifying the type of request being made of
the bridge, and then the remainder of the HTTP POST is dedicated to the contents of
that request specific data (all, again, encrypted with AES).

4.Requests and Responses
Within the encrypted HTTP data sent to the bridge is the type of request being made,
which determines what goes into the rest of the request and what the bridge should
respond with.

Request: 1 (Register client)
Request Data: hc=hashcash(currentSessionTag, k bits)

Response: status=ok&clientid=id&exp=yyyy/MM/dd.hh:mm:ss&passkey=passkey

status=badhashcash

status=overloaded[&althost=host&altport=portnum]

InvisibleNet – www.invisiblenet.net Page 4/6

Illustration 1: Session initiation and key negotiation

Notes: hashcash(data, n) runs a hashcash calculation against the first n bits in data

On overload, the server may optionally return an alternate http bridge

passkey is the client's private pass key to poll for messages.

yyyy/MM/dd.hh:mm:ss is the date and time (GMT) the client id expires

Request: 2 (Client Session Negotiate)
Request Data: clientid=id&hc=hashcash(currentSessionTag, k bits)&data=data

Response: status=ok

status=badid

status=badhashcash

status=overloaded

Notes: hashcash(data, n) runs a hashcash calculation against the first n bits in data

The contents of data is a 32 byte session key, followed by 7 32 byte session tags,
all of which are encrypted by ElGamal against the receiving client's 2048bit
public key.

Request: 3 (Send message)
Request Data: clientid=id&hc=hashcash(currentSessionTag, k bits)&hash=h(data)

&data=data

Response: status=ok&messageid=id

status=badid

status=badhashcash

status=badhash

status=overloaded

Notes: hashcash(data, n) runs a hashcash calculation against the first n bits in data

h(data) runs a SHA256 calculation against the data

data begins with a session tag (as negotiated with a Client Session Negotiate
message), with the remaining data being encrypted with the session key from the
associated client session negotiation with AES256 in CBC mode. The contents
of this data is a 32 byte authentication code, then a 1 byte unsigned integer
specifying how many additional session tags follow, then that many 32 byte
session tags, then the SHA256 of the payload of the message, followed by the
actual payload.

Request: 4 (Poll for messages)
Request Data: clientid=id&passkey=passkey

Response: #negotiations (clientNegotiationData)* #messages

(messageid sizeof(messageData) h(messageData) messageData)*

InvisibleNet – www.invisiblenet.net Page 5/6

Notes: The body of the response begins with a 1 byte unsigned integer specifying how
many client negotiation structures follow, then those structures (as sent by
previous clients via Client Session Negotiate messages), followed by a 1 byte
unsigned integer specifying how many messages follow, then for each of those
messages there is a 4 byte message id, followed by a 4 byte unsigned integer
specifying the size of the message itself, then the SHA256 of the message, and
finally the message in question. The message payload referred to is the data
encoded and encrypted according to the associated Send Message messages, not
the unencrypted and decoded payload.

Request: 5 (Acknowledge Receipt)
Request Data: clientid=id&passkey=passkey&messageid=msgid&code=code

Response: status=ok

status=badmessageid

Notes: code is the 32 byte authentication code from the unencrypted payload sent to it in
the associated message id.

Request: 6 (Verify Receipt)
Request Data: clientid=id&messageid=msgid

Response: status=pending

status=code

Notes: code is the 32 byte authentication code from the unencrypted payload sent to it in
the associated message id, delivered only if the message has been acknowledged
by the recipient.

Request: 7 (Register Bridge)
Request Data: host=host&port=port

Response: status=ok&(&hostn=host&portn=port)*

Notes: After submitting a host/port pair, the response may provide 0 or more host/port
pairs (n=0..k).

InvisibleNet – www.invisiblenet.net Page 6/6

